Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development.
نویسندگان
چکیده
This paper shows stage- and tissue-specific global demethylation and remethylation occurring during embryonic development. The egg genome is strikingly undermethylated and the sperm genome relatively methylated. Following a loss of genomic methylation during preimplantation development, embryonic and extraembryonic lineages are progressively and independently methylated to different final extents. Methylation continues postgastrulation and hence could be a mechanism initiating, or confirming, differential programming in the definitive germ layers. It is proposed that much of the methylation observed in somatic tissues acts to stabilize and reinforce prior events that regulate the activity of specific genes, chromosome domains or the X chromosome (in females). Fetal germ cell DNA is markedly undermethylated and we favour the idea that the germ lineage is set aside before the occurrence of extensive methylation of DNA in fetal precursor cells.
منابع مشابه
P-128: The Effect of DNA Methyl Transferase1 Inhibitor (RG108) on DNA Methylation Pattern of Cloned Mouse Embryos
Background: In somatic cell nuclear transfer (SCNT) method of cloning, transferred nucleus should be dedifferentiated from differentiated state to embryonic state. Molecular analysis showed that the reprogramming in the transferred nucleus was incomplete and cloned embryos have epigenetic abnormalities such as high DNA methylations levels. Since methylation in pre-implantation embryos has a cri...
متن کاملDNA Methylation Is Dispensable for the Growth and Survival of the Extraembryonic Lineages
DNA methylation regulates development and many epigenetic processes in mammals, and it is required for somatic cell growth and survival. In contrast, embryonic stem (ES) cells can self-renew without DNA methylation. It remains unclear whether any lineage-committed cells can survive without DNA-methylation machineries. Unlike in somatic cells, DNA methylation is dispensable for imprinting and X-...
متن کاملRegulation of Lineage Specific DNA Hypomethylation in Mouse Trophectoderm
BACKGROUND DNA methylation is reprogrammed during early embryogenesis by active and passive mechanisms in advance of the first differentiation event producing the embryonic and extraembryonic lineage cells which contribute to the future embryo proper and to the placenta respectively. Embryonic lineage cells re-acquire a highly methylated genome dependent on the DNA methyltransferases (DNMTs) Dn...
متن کاملEarly embryonic cell fate decisions in the mouse.
During development, initially totipotent cells of the embryo specialize to form discrete tissue lineages. The first lineages to form in the mouse are the extraembryonic tissues. Meanwhile, cells that do not become extraembryonic retain a pluripotent fate since they can give rise to all the germ layers of the fetus. Pluripotent stem cell lines have been derived from the fetal lineage at several ...
متن کاملTissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells.
Mouse primordial germ cells express tissue non-specific alkaline phosphatase (TNAP) during development, but the widespread expression of another alkaline phosphatase gene in the early embryo limits the potential use of this marker to trace germ cells. To attempt to identify germ cells at all stages during embryonic development and to understand the role of TNAP in germ cell ontogeny, mice carry...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 99 3 شماره
صفحات -
تاریخ انتشار 1987